首页> 外文OA文献 >Unsupervised ensemble of experts (EoE) framework for automatic binarization of document images
【2h】

Unsupervised ensemble of experts (EoE) framework for automatic binarization of document images

机译:无人监督的专家团队(EoE)自动框架   文档图像的二值化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years, a large number of binarization methods have been developed,with varying performance generalization and strength against differentbenchmarks. In this work, to leverage on these methods, an ensemble of experts(EoE) framework is introduced, to efficiently combine the outputs of variousmethods. The proposed framework offers a new selection process of thebinarization methods, which are actually the experts in the ensemble, byintroducing three concepts: confidentness, endorsement and schools of experts.The framework, which is highly objective, is built based on two generalprinciples: (i) consolidation of saturated opinions and (ii) identification ofschools of experts. After building the endorsement graph of the ensemble for aninput document image based on the confidentness of the experts, the saturatedopinions are consolidated, and then the schools of experts are identified bythresholding the consolidated endorsement graph. A variation of the framework,in which no selection is made, is also introduced that combines the outputs ofall experts using endorsement-dependent weights. The EoE framework is evaluatedon the set of participating methods in the H-DIBCO'12 contest and also on anensemble generated from various instances of grid-based Sauvola method withpromising performance.
机译:近年来,已经开发了许多二值化方法,具有不同的性能概括性和针对不同基准的强度。在这项工作中,为了利用这些方法,引入了一个专家组(EoE)框架,以有效地组合各种方法的输出。所提出的框架通过引入三个概念(信心,认可和专家流派)提供了一种二元化方法的新选择过程,该方法实际上是集合中的专家。该框架高度客观,基于两个一般原则构建的: )合并饱和意见并(ii)确定专家学校。在基于专家的信心为输入文档图像构建整体的背书图之后,对饱和观点进行合并,然后通过对合并后的背书图进行阈值识别来确定专家流派。还引入了一个框架的变体,其中没有做出选择,它使用依赖于背书的权重结合了所有专家的输出。 EoE框架是根据H-DIBCO'12竞赛中的一组参与方法以及基于网格的Sauvola方法的各种实例所产生的具有良好性能的集合进行评估的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号